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Gwynn and Skillern' have reoently noted that basic treatment of a-6&rcmomethylnorbornan- 

exo-2-01 I aan give rise to ketone 2 depending on basis conditions. For example, NaB/TBF reacts - 

with I to yield 2 almost exclusively. This conversion was rationalised in terms of a novel 

intramolecular l,Chydride-shift-substitution reaction (shown schematically in the aocrompanying 

chart) although the possibility of an intermolecular pathway was not discounted. We have ll~y 

found that the structurally related brcunohydrin zundergoes a similar transformation to give i. 

Since 2 possesses the same pertinent stereochsizical features as L, the observation of this sams 

type of conversion lends further support to the proposed intramolecular pathway. 

Compound 2 in refluxing EtcH/KCXi gave a mixture of three components: the expected 

elimination product 2 as well as the expeoted displaasment product 1 and the methylnortricyclan- 

one 4_ The m spectrum of olefin 2 showed signals (Z-saale, relative to TM) at 5.43, 5.49 

(8, 2H, ==CH2); 6.22 (br tr, lH, C&H); 6.47 (8, lli, 0X-i); 7.97 (br m, 1H); 8.1 to 8.7 (br m, 6B). 

The infrared spectrum of 2 displayed charaateristic absorption at 3616 (CH stretching), 3073 

(olefinic and cyclopropyl GH stretching), 1673 (Cx stretching) and 860 cm-' (=CH2 deformation 

mode and nortricyalene skeletonj!). 'lhe pp~ speotrum of the ethyl ether 2 showed signals at 

6.01 (br tr, 1H. C_CS%); 6.61 (quart, J = 7 He, e,CH,)and 6.72 (d, J = 7 Bz, CHg20), total 

4H; 7.01 (8, lH, C&I); 8.08 (br m, 3H); 8.85 (tr, J = 7 Hz, Cl&a20, superimposed on br m, 7B). 

The infrared spectrum of 2 showed characteristic absorption at 3624 (OH stretohing), 3072 

(cyclopropyl C-H stretching), and 841 as-'(nortriayclene skeleton). The minor component iwas 

shown to be identical (vpc Rt and ir) to the ketone prepared from 2 via debranination and 

subsequent oxidation. 3 

Treatment of 2 with NaH/THF gave a mixture of ketone 1 (identified by vpa peak enhanoe- 

ment only) and the diastereomeria 

(such as 2_) react with Nali to form 

aloohols 1 and a.3 It is known that enolizable ketones 

the enolate anion rather than undergo hydride attack of the 

6053 



6054 No.58 

Conditionsi- (a) raa/stcci, roflux, 24 hr. (b) RaH/l!IiF, reflux, 50 hr. 

oarbonylaaarbon.4 With non-enolizable ketones (such as i) the latter process oacurs. ti the 

basis of these okeervations it would appear that 2 underqoes 1,4-hydride-shift-substitution to 

yield i wbiah, in aontrast to 2, suffers aarbonyl ra&otion under these aorditions giving 2 and 

0 _. In support of this, ketone f. was found to give 1 and 2 (and 2% reaatant f) under identiaal 

oonditions. However, the proportions of 2 (76%) and a (26%) were markedly different from the 

proportions resulting from identiaal treatment of Sand ie therefore not aonsistent with a 

single pathway for reaotion of 2 involving 1,4-hydride-shift-substitution and subsequent 

aaxbonyl reduation. We feel therefore that 2 undergoes tw aompetirq reaotions: one involvixq 

direat Ndi dabromination of J to give & direatly and the other involviw l+hydride-shift- 

substitution to give 1 and g via ketone &. Ihe prcduat distribution suggest that these two 

pathways compete to roughly equal extents. 
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