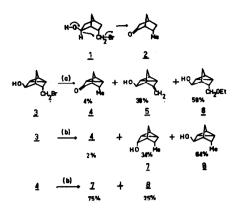
A FURTHER EXAMPLE OF A *1,4-HYDRIDE-SHIFT-SUBSTITUTION REACTION*

D.W. Rome and B.L. Johnson


Department of Organic Chemistry, University of Western Australia, Nedlands, W.A., 6009

(Received in UK 14 October 1968; accepted for publication 4 November 1968)

Gwynn and Skillern¹ have recently noted that basic treatment of <u>endo</u>-6-bromomethylnorbornan-<u>exo</u>-2-ol <u>I</u> can give rise to ketone <u>2</u> depending on basic conditions. For example, NaH/THF reacts with <u>I</u> to yield <u>2</u> almost exclusively. This conversion was rationalized in terms of a novel intramolecular 1,4-hydride-shift-substitution reaction (shown schematically in the accompanying chart) although the possibility of an intermolecular pathway was not discounted. We have now found that the structurally related bromohydrin <u>3</u> undergoes a similar transformation to give <u>4</u>. Since <u>3</u> possesses the same pertinent stereochemical features as <u>I</u>, the observation of this same type of conversion lends further support to the proposed intramolecular pathway.

Compound <u>3</u> in refluxing EtOH/KOH gave a mixture of three components: the expected elimination product <u>5</u> as well as the expected displacement product <u>6</u> and the methylnortricyclanone <u>4.</u> The pmr spectrum of olefin <u>5</u> showed signals (τ -scale, relative to TMS) at 5.43, 5.49 (s, 2H, =CH₂); 6.22 (br tr, 1H, CHOH); 6.47 (s, 1H, OH); 7.97 (br m, 1H); 8.1 to 8.7 (br m, 5H). The infrared spectrum of <u>5</u> displayed characteristic absorption at 3616 (OH stretching), 3073 (olefinic and cyclopropyl C-H stretching), 1673 (C=C stretching) and 860 cm⁻¹ (=CH₂ deformation mode and nortricyclene skeleton²). The pmr spectrum of the ethyl ether <u>6</u> showed signals at 6.01 (br tr, 1H, CHOH); 6.61 (quart, J = 7 Hz, COH_2CH_3) and 6.72 (d, J = 7 Hz, $CHOH_2O$), total 4H; 7.01 (s, 1H, OH); 8.08 (br m, 3H); 8.85 (tr, J = 7 Hz, CH_3CH_2O , superimposed on br m, 7H). The infrared spectrum of <u>6</u> showed characteristic absorption at 3624 (OH stretching), 3072 (cyclopropyl C-H stretching), and 841 cm⁻¹ (nortricyclene skeleton). The minor component <u>4</u> was shown to be identical (vpc R_t and ir) to the ketone prepared from <u>3</u> via debromination and subsequent oxidation.³

Treatment of 3 with NaH/THF gave a mixture of ketone 4 (identified by vpc peak enhancement only) and the diastereomeric alcohols 7 and 8.³ It is known that enclivable ketones (such as 2) react with NaH to form the enclate anion rather than undergo hydride attack of the

Conditions:- (a) KOH/EtCH, reflux, 24 hr. (b) NaH/THF, reflux, 50 hr.

carbonyl carbon.⁴ With non-enclizable ketones (such as $\underline{4}$) the latter process occurs. On the basis of these observations it would appear that $\underline{3}$ undergoes 1,4-hydride-shift-substitution to yield $\underline{4}$ which, in contrast to $\underline{2}$, suffers carbonyl reduction under these conditions giving $\underline{7}$ and $\underline{8}$. In support of this, ketone $\underline{4}$ was found to give $\underline{7}$ and $\underline{8}$ (and 2π reactant $\underline{4}$) under identical conditions. However, the proportions of $\underline{7}$ (75%) and $\underline{8}$ (25%) were markedly different from the proportions resulting from identical treatment of $\underline{3}$ and is therefore not consistent with a single pathway for reaction of $\underline{3}$ involving 1,4-hydride-shift-substitution and subsequent carbonyl reduction. We feel therefore that $\underline{3}$ undergoes two competing reactions: one involving direct NaH debromination of $\underline{3}$ to give $\underline{8}$ directly and the other involving 1,4-hydride-shift-substitution to give $\underline{7}$ and $\underline{8}$ via ketone $\underline{4}$. The product distribution suggest that these two pathways compete to roughly equal extents.

ACKNOWLEDGEMENT

One of us (D.W.R.) is grateful for support from a BP Scholarship. This work was supported in part by a grant from the Australian Research Grants Committee.

REFERENCES

- 1. D.E. Gwynn and L. Skillern, Chem. Comm., 490 (1968).
- 2. J. Paasivirta, Suomen Kemi. <u>31B</u>, 115 (1958).
- 3. See accompanying communication.
- 4. F.W. Swamer and C.R. Hauser, J. Am. Chem. Soc., 68, 2647 (1946).